Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 7(11): 1914-1929, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37652999

RESUMO

The tiger (Panthera tigris) is a charismatic megafauna species that originated and diversified in Asia and probably experienced population contraction and expansion during the Pleistocene, resulting in low genetic diversity of modern tigers. However, little is known about patterns of genomic diversity in ancient populations. Here we generated whole-genome sequences from ancient or historical (100-10,000 yr old) specimens collected across mainland Asia, including a 10,600-yr-old Russian Far East specimen (RUSA21, 8× coverage) plus six ancient mitogenomes, 14 South China tigers (0.1-12×) and three Caspian tigers (4-8×). Admixture analysis showed that RUSA21 clustered within modern Northeast Asian phylogroups and partially derived from an extinct Late Pleistocene lineage. While some of the 8,000-10,000-yr-old Russian Far East mitogenomes are basal to all tigers, one 2,000-yr-old specimen resembles present Amur tigers. Phylogenomic analyses suggested that the Caspian tiger probably dispersed from an ancestral Northeast Asian population and experienced gene flow from southern Bengal tigers. Lastly, genome-wide monophyly supported the South China tiger as a distinct subspecies, albeit with mitochondrial paraphyly, hence resolving its longstanding taxonomic controversy. The distribution of mitochondrial haplogroups corroborated by biogeographical modelling suggested that Southwest China was a Late Pleistocene refugium for a relic basal lineage. As suitable habitat returned, admixture between divergent lineages of South China tigers took place in Eastern China, promoting the evolution of other northern subspecies. Altogether, our analysis of ancient genomes sheds light on the evolutionary history of tigers and supports the existence of nine modern subspecies.


Assuntos
Tigres , Animais , Tigres/genética , DNA Antigo , Filogenia , Federação Russa , China
2.
Sci Rep ; 13(1): 11992, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491593

RESUMO

The family Cervidae is the second most diverse in the infraorder Pecora and is characterized by variability in the diploid chromosome numbers among species. X chromosomes in Cervidae evolved through complex chromosomal rearrangements of conserved segments within the chromosome, changes in centromere position, heterochromatic variation, and X-autosomal translocations. The family Cervidae consists of two subfamilies: Cervinae and Capreolinae. Here we build a detailed X chromosome map with 29 cattle bacterial artificial chromosomes of representatives of both subfamilies: reindeer (Rangifer tarandus), gray brocket deer (Mazama gouazoubira), Chinese water deer (Hydropotes inermis) (Capreolinae); black muntjac (Muntiacus crinifrons), tufted deer (Elaphodus cephalophus), sika deer (Cervus nippon) and red deer (Cervus elaphus) (Cervinae). To track chromosomal rearrangements during Cervidae evolution, we summarized new data, and compared them with available X chromosomal maps and chromosome level assemblies of other species. We demonstrate the types of rearrangements that may have underlined the variability of Cervidae X chromosomes. We detected two types of cervine X chromosome-acrocentric and submetacentric. The acrocentric type is found in three independent deer lineages (subfamily Cervinae and in two Capreolinae tribes-Odocoileini and Capreolini). We show that chromosomal rearrangements on the X-chromosome in Cervidae occur at a higher frequency than in the entire Ruminantia lineage: the rate of rearrangements is 2 per 10 million years.


Assuntos
Cervos , Rena , Bovinos , Animais , Cervos/genética , Ruminantes/genética , Cromossomos , Cervo Muntjac/genética , Cromossomo X/genética , Rena/genética
3.
Curr Biol ; 31(9): 1872-1882.e5, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33848458

RESUMO

Leopards are the only big cats still widely distributed across the continents of Africa and Asia. They occur in a wide range of habitats and are often found in close proximity to humans. But despite their ubiquity, leopard phylogeography and population history have not yet been studied with genomic tools. Here, we present population-genomic data from 26 modern and historical samples encompassing the vast geographical distribution of this species. We find that Asian leopards are broadly monophyletic with respect to African leopards across almost their entire nuclear genomes. This profound genetic pattern persists despite the animals' high potential mobility, and despite evidence of transfer of African alleles into Middle Eastern and Central Asian leopard populations within the last 100,000 years. Our results further suggest that Asian leopards originated from a single out-of-Africa dispersal event 500-600 thousand years ago and are characterized by higher population structuring, stronger isolation by distance, and lower heterozygosity than African leopards. Taxonomic categories do not take into account the variability in depth of divergence among subspecies. The deep divergence between the African subspecies and Asian populations contrasts with the much shallower divergence among putative Asian subspecies. Reconciling genomic variation and taxonomy is likely to be a growing challenge in the genomics era.


Assuntos
Panthera , Animais , Ásia , Gatos , Ecossistema , Genômica , Filogeografia
4.
Proc Natl Acad Sci U S A ; 117(50): 31954-31962, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33229566

RESUMO

Canine distemper virus (CDV) has recently emerged as an extinction threat for the endangered Amur tiger (Panthera tigris altaica). CDV is vaccine-preventable, and control strategies could require vaccination of domestic dogs and/or wildlife populations. However, vaccination of endangered wildlife remains controversial, which has led to a focus on interventions in domestic dogs, often assumed to be the source of infection. Effective decision making requires an understanding of the true reservoir dynamics, which poses substantial challenges in remote areas with diverse host communities. We carried out serological, demographic, and phylogenetic studies of dog and wildlife populations in the Russian Far East to show that a number of wildlife species are more important than dogs, both in maintaining CDV and as sources of infection for tigers. Critically, therefore, because CDV circulates among multiple wildlife sources, dog vaccination alone would not be effective at protecting tigers. We show, however, that low-coverage vaccination of tigers themselves is feasible and would produce substantive reductions in extinction risks. Vaccination of endangered wildlife provides a valuable component of conservation strategies for endangered species.


Assuntos
Cinomose/prevenção & controle , Espécies em Perigo de Extinção/economia , Tigres/virologia , Vacinação/economia , Vacinas Virais/administração & dosagem , Animais , Animais Selvagens/virologia , Tomada de Decisões Gerenciais , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Cinomose/epidemiologia , Cinomose/transmissão , Cinomose/virologia , Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/imunologia , Cães/sangue , Cães/virologia , Estudos de Viabilidade , Feminino , Masculino , Modelos Econômicos , Filogenia , Estudos Soroepidemiológicos , Sibéria , Tigres/sangue , Vacinação/métodos , Cobertura Vacinal/economia , Cobertura Vacinal/métodos , Cobertura Vacinal/organização & administração , Vacinas Virais/economia
5.
Transbound Emerg Dis ; 67(3): 1177-1188, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31833654

RESUMO

Translocation of wildlife as a means of reintroducing or reinforcing threatened populations is an important conservation tool but carries health risks for the translocated animals and their progeny, as well as wildlife, domestic animals and humans in the release area. Disease risk analyses (DRA) are used to identify, prioritize and design mitigation strategies to address these threats. Here, we use a DRA undertaken for Amur leopards (Panthera pardus orientalis) to illustrate how specific methodology can optimize mitigation strategy design. A literature review identified a total of 98 infectious hazards and 28 non-infectious hazards. Separate analyses were undertaken for disease risks in leopards from hazards of source origin (captive zoo collections and the transit pathway to the Russian Far East), or of destination origin (in breeding enclosures and wider release areas); and for disease risks in other wildlife, domesticated species or humans, similarly from hazards of source or destination origin. Hazards were assessed and ranked as priority 1, priority 2, priority 3 or low priority in each of the defined scenarios. In addition, we undertook a generic assessment of stress on individual leopards. We use three examples to illustrate the process: Chlamydophila felis, canine distemper virus (CDV) and feline immunodeficiency virus (FIV). We found that many potentially expensive screening procedures could be performed prior to export of leopards, putting the onus of responsibility onto the zoo sector, for which access to diagnostic testing facilities is likely to be optimal. We discuss how our methods highlighted significant data gaps relating to pathogen prevalence in the Russian Far East and likely future unpredictability, in particular with respect to CDV. There was emphasis at all stages on record keeping, meticulous planning, design, staff training and enclosure management, which are relatively financially inexpensive. Actions to minimize stress featured at all time points in the strategy and also focussed on planning, design and management.


Assuntos
Infecções por Chlamydia/veterinária , Conservação dos Recursos Naturais/métodos , Cinomose/virologia , Infecções por Lentivirus/veterinária , Panthera , Animais , Chlamydia , Infecções por Chlamydia/virologia , Vírus da Cinomose Canina , Vírus da Imunodeficiência Felina , Infecções por Lentivirus/virologia , Sibéria
6.
Curr Biol ; 28(23): 3840-3849.e6, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30482605

RESUMO

No other species attracts more international resources, public attention, and protracted controversies over its intraspecific taxonomy than the tiger (Panthera tigris) [1, 2]. Today, fewer than 4,000 free-ranging tigers survive, covering only 7% of their historical range, and debates persist over whether they comprise six, five, or two subspecies [3-6]. The lack of consensus over the number of tiger subspecies has partially hindered the global effort to recover the species from the brink of extinction, as both captive breeding and landscape intervention of wild populations increasingly require an explicit delineation of the conservation management units [7]. The recent coalescence to a late Pleistocene bottleneck (circa 110 kya) [5, 8, 9] poses challenges for detecting tiger subspecific morphological traits, suggesting that elucidating intraspecific evolution in the tiger requires analyses at the genomic scale. Here, we present whole-genome sequencing analyses from 32 voucher specimens that resolve six statistically robust monophyletic clades corresponding to extant subspecies, including the recently recognized Malayan tiger (P. tigris jacksoni). The intersubspecies gene flow is very low, corroborating the recognized phylogeographic units. We identified multiple genomic regions that are candidates for identifying the adaptive divergence of subspecies. The body-size-related gene ADH7 appears to have been strongly selected in the Sumatran tiger, perhaps in association with adaptation to the tropical Sunda Islands. The identified genomic signatures provide a solid basis for recognizing appropriate conservation management units in the tiger and can benefit global conservation strategic planning for this charismatic megafauna icon.


Assuntos
Adaptação Biológica , Conservação dos Recursos Naturais , Fluxo Gênico , Genoma , Tigres/genética , Animais , Evolução Biológica , Feminino , Masculino , Filogeografia , Sequenciamento Completo do Genoma
7.
J Wildl Dis ; 54(1): 170-174, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053427

RESUMO

The critically endangered population of Far Eastern leopards ( Panthera pardus orientalis) may number as few as 60 individuals and is at risk from stochastic processes such as infectious disease. During May 2015, a case of canine distemper virus (CDV) was diagnosed in a wild leopard exhibiting severe neurologic disease in the Russian territory of Primorskii Krai. Amplified sequences of the CDV hemagglutinin gene and phosphoprotein gene aligned within the Arctic-like clade of CDV, which includes viruses from elsewhere in Russia, China, Europe, and North America. Histologic examination of cerebral tissue revealed perivascular lymphoid cuffing and demyelination of the white matter consistent with CDV infection. Neutralizing antibodies against CDV were detected in archived serum from two wild Far Eastern leopards sampled during 1993-94, confirming previous exposure in the population. This leopard population is likely too small to maintain circulation of CDV, suggesting that infections arise from spillover from more-abundant domestic or wild carnivore reservoirs. Increasing the population size and establishment of additional populations of leopards would be important steps toward securing the future of this subspecies and reducing the risk posed by future outbreaks of CDV or other infectious diseases.


Assuntos
Vírus da Cinomose Canina , Cinomose/virologia , Panthera/virologia , Animais , Animais Selvagens , Cinomose/epidemiologia , Cinomose/patologia , Espécies em Perigo de Extinção , Feminino , Federação Russa/epidemiologia
8.
Genome Biol ; 17(1): 211, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27802837

RESUMO

BACKGROUND: There are three main dietary groups in mammals: carnivores, omnivores, and herbivores. Currently, there is limited comparative genomics insight into the evolution of dietary specializations in mammals. Due to recent advances in sequencing technologies, we were able to perform in-depth whole genome analyses of representatives of these three dietary groups. RESULTS: We investigated the evolution of carnivory by comparing 18 representative genomes from across Mammalia with carnivorous, omnivorous, and herbivorous dietary specializations, focusing on Felidae (domestic cat, tiger, lion, cheetah, and leopard), Hominidae, and Bovidae genomes. We generated a new high-quality leopard genome assembly, as well as two wild Amur leopard whole genomes. In addition to a clear contraction in gene families for starch and sucrose metabolism, the carnivore genomes showed evidence of shared evolutionary adaptations in genes associated with diet, muscle strength, agility, and other traits responsible for successful hunting and meat consumption. Additionally, an analysis of highly conserved regions at the family level revealed molecular signatures of dietary adaptation in each of Felidae, Hominidae, and Bovidae. However, unlike carnivores, omnivores and herbivores showed fewer shared adaptive signatures, indicating that carnivores are under strong selective pressure related to diet. Finally, felids showed recent reductions in genetic diversity associated with decreased population sizes, which may be due to the inflexible nature of their strict diet, highlighting their vulnerability and critical conservation status. CONCLUSIONS: Our study provides a large-scale family level comparative genomic analysis to address genomic changes associated with dietary specialization. Our genomic analyses also provide useful resources for diet-related genetic and health research.


Assuntos
Variação Genética , Genoma , Panthera/genética , Análise de Sequência de DNA , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Gatos , Herbivoria/genética , Mamíferos/genética , Anotação de Sequência Molecular , Filogenia
9.
Integr Zool ; 10(4): 376-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25950598

RESUMO

Poaching and trans-boundary trafficking of tigers and body parts are threatening the world's last remaining wild tigers. Development of an efficient molecular genetic assay for tracing the origins of confiscated specimens will assist in law enforcement and wildlife forensics for this iconic flagship species. We developed a multiplex genotyping system "tigrisPlex" to simultaneously assess 22 short tandem repeat (STR, or microsatellite) loci and a gender-identifying SRY gene, all amplified in 4 reactions using as little as 1 ng of template DNA. With DNA samples used for between-run calibration, the system generates STR genotypes that are directly compatible with voucher tiger subspecies genetic profiles, hence making it possible to identify subspecies via bi-parentally inherited markers. We applied "tigrisPlex" to 12 confiscated specimens from Russia and identified 6 individuals (3 females and 3 males), each represented by duplicated samples and all designated as Amur tigers (Panthera tigris altaica) with high confidence. This STR multiplex system can serve as an effective and versatile approach for genetic profiling of both wild and captive tigers as well as confiscated tiger products, fulfilling various conservation needs for identifying the origins of tiger samples.


Assuntos
Genes sry , Tigres/genética , Animais , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Feminino , Masculino , Repetições de Microssatélites , Análise de Sequência de DNA , Especificidade da Espécie
10.
Integr Zool ; 10(4): 329-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25939829

RESUMO

Canine distemper virus (CDV) has recently been identified in populations of wild tigers in Russia and India. Tiger populations are generally too small to maintain CDV for long periods, but are at risk of infections arising from more abundant susceptible hosts that constitute a reservoir of infection. Because CDV is an additive mortality factor, it could represent a significant threat to small, isolated tiger populations. In Russia, CDV was associated with the deaths of tigers in 2004 and 2010, and was coincident with a localized decline of tigers in Sikhote-Alin Biosphere Zapovednik (from 25 tigers in 2008 to 9 in 2012). Habitat continuity with surrounding areas likely played an important role in promoting an ongoing recovery. We recommend steps be taken to assess the presence and the impact of CDV in all tiger range states, but should not detract focus away from the primary threats to tigers, which include habitat loss and fragmentation, poaching and retaliatory killing. Research priorities include: (i) recognition and diagnosis of clinical cases of CDV in tigers when they occur; and (ii) collection of baseline data on the health of wild tigers. CDV infection of individual tigers need not imply a conservation threat, and modeling should complement disease surveillance and targeted research to assess the potential impact to tiger populations across the range of ecosystems, population densities and climate extremes occupied by tigers. Describing the role of domestic and wild carnivores as contributors to a local CDV reservoir is an important precursor to considering control measures.


Assuntos
Vírus da Cinomose Canina/fisiologia , Cinomose/epidemiologia , Tigres/virologia , Animais , Conservação dos Recursos Naturais , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Cinomose/mortalidade , Cinomose/transmissão , Dinâmica Populacional , Federação Russa/epidemiologia
11.
Curr Biol ; 18(8): 592-6, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18424146

RESUMO

Tigers (Panthera tigris) are disappearing rapidly from the wild, from over 100,000 in the 1900s to as few as 3000. Javan (P.t. sondaica), Bali (P.t. balica), and Caspian (P.t. virgata) subspecies are extinct, whereas the South China tiger (P.t. amoyensis) persists only in zoos. By contrast, captive tigers are flourishing, with 15,000-20,000 individuals worldwide, outnumbering their wild relatives five to seven times. We assessed subspecies genetic ancestry of 105 captive tigers from 14 countries and regions by using Bayesian analysis and diagnostic genetic markers defined by a prior analysis of 134 voucher tigers of significant genetic distinctiveness. We assigned 49 tigers to one of five subspecies (Bengal P.t. tigris, Sumatran P.t. sumatrae, Indochinese P.t. corbetti, Amur P.t. altaica, and Malayan P.t. jacksoni tigers) and determined 52 had admixed subspecies origins. The tested captive tigers retain appreciable genomic diversity unobserved in their wild counterparts, perhaps a consequence of large population size, century-long introduction of new founders, and managed-breeding strategies to retain genetic variability. Assessment of verified subspecies ancestry offers a powerful tool that, if applied to tigers of uncertain background, may considerably increase the number of purebred tigers suitable for conservation management.


Assuntos
Animais de Zoológico/genética , Tigres/genética , Animais , Conservação dos Recursos Naturais , Variação Genética , Repetições de Microssatélites , Tigres/classificação
12.
PLoS Biol ; 2(12): e442, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15583716

RESUMO

Eight traditional subspecies of tiger (Panthera tigris),of which three recently became extinct, are commonly recognized on the basis of geographic isolation and morphological characteristics. To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular markers: (1) 4.0 kb of mitochondrial DNA (mtDNA) sequence; (2) allele variation in the nuclear major histocompatibility complex class II DRB gene; and (3) composite nuclear microsatellite genotypes based on 30 loci. Relatively low genetic variation with mtDNA,DRB,and microsatellite loci was found, but significant population subdivision was nonetheless apparent among five living subspecies. In addition, a distinct partition of the Indochinese subspecies P. t. corbetti in to northern Indochinese and Malayan Peninsula populations was discovered. Population genetic structure would suggest recognition of six taxonomic units or subspecies: (1) Amur tiger P. t. altaica; (2) northern Indochinese tiger P. t. corbetti; (3) South China tiger P. t. amoyensis; (4) Malayan tiger P. t. jacksoni, named for the tiger conservationist Peter Jackson; (5) Sumatran tiger P. t. sumatrae; and (6) Bengal tiger P. t. tigris. The proposed South China tiger lineage is tentative due to limited sampling. The age of the most recent common ancestor for tiger mtDNA was estimated to be 72,000-108,000 y, relatively younger than some other Panthera species. A combination of population expansions, reduced gene flow, and genetic drift following the last genetic diminution, and the recent anthropogenic range contraction, have led to the distinct genetic partitions. These results provide an explicit basis for subspecies recognition and will lead to the improved management and conservation of these recently isolated but distinct geographic populations of tigers.


Assuntos
Tigres/genética , Alelos , Animais , Teorema de Bayes , Evolução Biológica , Análise por Conglomerados , Conservação dos Recursos Naturais , Primers do DNA/química , DNA Mitocondrial/metabolismo , Variação Genética , Genótipo , Geografia , Haplótipos , Complexo Principal de Histocompatibilidade/genética , Repetições de Microssatélites , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Fatores de Tempo
13.
C R Biol ; 326 Suppl 1: S93-7, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14558456

RESUMO

A role for molecular genetic approaches in conservation of endangered taxa is now commonly recognized. Because conservation genetic analyses provide essential insights on taxonomic status, recent evolutionary history and current health of endangered taxa, they are considered in nearly all conservation programs. Genetic analyses of the critically endangered Far Eastern, or Amur leopard, Panthera pardus orientalis, have been done recently to address all of these questions and develop strategies for survival of the leopard in the wild. The genetic status and implication for conservation management of the Far Eastern leopard subspecies are discussed.


Assuntos
Carnívoros/genética , Conservação dos Recursos Naturais/métodos , Repetições de Microssatélites/genética , Polimorfismo Genético/genética , Animais , Animais Selvagens , Animais de Zoológico , Evolução Biológica , Carnívoros/classificação , Ásia Oriental , Heterozigoto , Filogenia , Federação Russa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA